發表文章

目前顯示的是有「YOLOv8」標籤的文章

【YOLOv8】姿態(動作)識別_俯臥撐計數

圖片
  用 Ultralytics YOLOv8 Pose 模型(yolov8x-pose.pt)搭配 AIGym 解決方案模組,對影片中的人物進行姿態辨識與伏地挺身(push-up)動作計數。 up_angle:如果角度超過這個值,代表身體在「上推」階段 down_angle:如果角度低於這個值,代表身體在「下壓」階段 kpts=[5, 7, 9],分別是左肩(left shoulder)、左肘(left elbow)、左手腕(left wrist) 用這三個點計算手臂夾角,以判斷 push-up 是否完成一個動作。 偵測深蹲的話kpts 就可以類似改成 [11,13,15] https://github.com/Alimustoofaa/YoloV8-Pose-Keypoint-Classification?tab=readme-ov-file 測試程式 import cv2 from ultralytics import solutions MODEL_PATH = "yolov8x-pose.pt" #yolov8x-pose.pt , yolo11n-pose.pt VIDEO_PATH = "fuwocheng.mp4" gym = solutions . AIGym( model = MODEL_PATH, kpts = [ 5 , 7 , 9 ], # 指定關鍵點:左肩-左肘-左手 up_angle = 100 , down_angle = 80 , line_width = 2 , show = False ) cap = cv2 . VideoCapture(VIDEO_PATH) if not cap . isOpened(): print ( "Error: Could not open video." ) exit () # ===== 新增:控制視窗大小與位置 ===== window_name = "Processed Frame" cv2 . namedWindow(window_name, cv2 . WINDOW_NORMAL) cv...

【YOLOv8】物件偵測與識別測試

圖片
  Yolo V8使用 pytorch 開發的,因此這邊採用Pycharm Community開發工具。 並進行Pytorch下載引入 開發測試環境Windows 11 電腦 Acer Predator PH315-54-72VQ 電競筆記型電腦 https://store.acer.com/zh-tw/ph315-54-72vq 處理器:Intel® Core™ i7-11800H 記憶體:32GB DDR4 3200MHz Memory 硬碟:512GB PCIe NVMe SSD 顯卡:NVIDIA® GeForce RTX™ 3070 記得先在Pycharm創建好Project-based的venv,這邊採用Python3.8。 之後依序執行已下指令把Pytorch需要的給裝一裝,安裝對應 CUDA 11.8 的 PyTorch 套件。 不要採用Anaconda內建虛擬環境提供的不支援GPU的Pytorch。 電腦有GPU顯卡用這下載方式的指令 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --no-cache-dir 電腦無GPU顯卡只能用CPU跑用這下載方式的指令 pip install torch torchvision torchaudio --no-cache-dir YOLO在演進到6之後版本就交由ultralytics這間公司團隊繼續精進研發。 到了第八版算是成熟也十分多產品在使用的版本。(目前最新還有出到11的樣子) pip install ultralytics CUDA 與 cuDNN 的關係與角色 CUDA(Compute Unified Device Architecture) 是 NVIDIA 開發的一套平行運算平台與程式設計模型,底層是用 C/C++ 所實作,允許開發者撰寫程式碼,並將運算密集的任務交由 GPU(圖形處理器) 處理。 CUDA 提供一組 API,可以讓像 Python、C++ 等高階語言編寫的程式,透過 CUDA 將資料與任務分派到 GPU 執行。 當 Python 呼叫如 TensorFlow、PyTorch 等深度學習框架中的 GPU 運算時,其實是透過這些框架內部...