YOLOv3鐘錶與類比儀表偵測_藉由NMS濾除重複輸出偵測框







Non-Maximum Suppression (NMS)







程式碼


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/dnn.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::dnn;

int main(int argc, char* argv[]) {
	const char* imagename = "C:/img/sample1_1.jpg";
	const char* weight_file = "C:/YOLOv3-416/yolov3.weights";
	const char* cfg_file = "C:/YOLOv3-416/yolov3.cfg";
	const char* label_map = "C:/YOLOv3-416/object_detection_classes_yolov3.txt";
	Net net = readNetFromDarknet(cfg_file, weight_file);//Load network model
	net.setPreferableBackend(DNN_BACKEND_OPENCV);
	net.setPreferableTarget(DNN_TARGET_CPU);

	vector<string> layer_names = net.getLayerNames();
	for (int i = 0; i < layer_names.size(); i++)
	{
		int id = net.getLayerId(layer_names[i]);
		auto layer = net.getLayer(id);
		printf("layer id : %d,type : %s,name : %s \n", id, layer->type.c_str(), layer->name.c_str());
	}
	Mat img = imread(imagename);
	if (img.empty()) {
		fprintf(stderr, "Can not load image %s\n", imagename);
		return -1;
	}
	namedWindow("image", 0);
	//resizeWindow("image", 900, 1200);
	resizeWindow("image", 600, 800);
	imshow("image", img);

	Mat blob = blobFromImage(img, 0.00392, Size(416, 416), Scalar(), true, false);
	net.setInput(blob);

	vector<Mat> outputs;
	net.forward(outputs, layer_names);
	vector<Rect> boxes;
	vector<int> classIds;
	vector<float> confidences;
	for (int i = 0; i < outputs.size(); i++)
	{
		float* data = (float*)outputs[i].data;
		for (int j = 0; j < outputs[i].rows; j++, data += outputs[i].cols) {
			Mat scores = outputs[i].row(j).colRange(5, outputs[i].cols);
			Point classIdPoint;
			double confidence;
			minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
			if (confidence > 0.5) {
				int center_x = (int)(data[0] * img.cols);
				int center_y = (int)(data[1] * img.rows);
				int width = (int)(data[2] * img.cols);
				int height = (int)(data[3] * img.rows);
				int left = center_x - width / 2;
				int top = center_y - height / 2;
				classIds.push_back(classIdPoint.x);
				confidences.push_back(confidence);
				boxes.push_back(Rect(left,top,width,height));
				rectangle(img, Rect(left, top, width, height) , Scalar(0,0,255) , 3 , 8);
			}
		}
	}

	//namedWindow("res", 0);
	//resizeWindow("res", 600, 800);
	//imshow("res", img);

	vector<int> indexes;
	NMSBoxes(boxes , confidences , 0.5 , 0.5 , indexes);
	for (int i = 0; i < indexes.size(); i++)
	{
		int idx = classIds[i];
		Rect box = boxes[i];
		rectangle(img , box , Scalar(255, 0,0) , 3 , 8);
	}
	namedWindow("nms_res", 0);
	resizeWindow("nms_res", 600, 800);
	imshow("nms_res", img);
	waitKey(0);
	return 0;
}




微調打印score跟辨識類別的文字訊息

程式碼


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/dnn.hpp"
#include <iostream>
#include <fstream> 
#include<cmath>
#include<string>
using namespace std;
using namespace cv;
using namespace cv::dnn;

void show_histogram(std::string const& name, cv::Mat1b const& image)
{
	// Set histogram bins count
	int bins = 256;
	int histSize[] = { bins };
	// Set ranges for histogram bins
	float lranges[] = { 0, 256 };
	const float* ranges[] = { lranges };
	// create matrix for histogram
	cv::Mat hist;
	int channels[] = { 0 };

	// create matrix for histogram visualization
	int const hist_height = 256;
	cv::Mat3b hist_image = cv::Mat3b::zeros(hist_height, bins);

	cv::calcHist(&image, 1, channels, cv::Mat(), hist, 1, histSize, ranges, true, false);

	double max_val = 0;
	minMaxLoc(hist, 0, &max_val);

	// visualize each bin
	for (int b = 0; b < bins; b++) {
		float const binVal = hist.at<float>(b);
		int   const height = cvRound(binVal * hist_height / max_val);
		cv::line
		(hist_image
			, cv::Point(b, hist_height - height), cv::Point(b, hist_height)
			, cv::Scalar::all(255)
		);
	}

	namedWindow(name, 0);
	resizeWindow(name, 300, 400);
	imshow(name, hist_image);
}


int main()
{
	//string imageFileName = "sample2_5.jpg";//THRESH_OTSU
	//string imageFileName = "IMG_20220721_194716.jpg";//THRESH_TRIANGLE
	//string imageFileName = "IMG_20220721_195110.jpg";
	//IMG_20220721_200920.jpg

	//string imageFileName = "IMG_20220721_200920.jpg";
	//string imagename = "C:/img/test/02/";

	bool IsNeedShowScore = true;
	string imageFileName = "IMG_20220721_200048.jpg";
	string imagename = "C:/img/test/23/";


	imagename.append(imageFileName);

	string weight_file = "C:/YOLOv3-416/yolov3.weights";
	string cfg_file = "C:/YOLOv3-416/yolov3.cfg";
	string label_map = "C:/YOLOv3-416/object_detection_classes_yolov3.txt";

	vector<string> classNames;
	ifstream fp(label_map);
	if (!fp.is_open()) {
		printf("could not find the file \n");
		exit(-1);
	}
	string name;
	while (!fp.eof())
	{
		getline(fp , name);
		if (name.length()) {
			classNames.push_back(name);
		}
	}
	fp.close();



	Net net = readNetFromDarknet(cfg_file, weight_file);//Load network model
	net.setPreferableBackend(DNN_BACKEND_OPENCV);
	net.setPreferableTarget(DNN_TARGET_CPU);

	vector<string> layer_names = net.getLayerNames();
	for (int i = 0; i < layer_names.size(); i++)
	{
		int id = net.getLayerId(layer_names[i]);
		auto layer = net.getLayer(id);
		printf("layer id : %d,type : %s,name : %s \n", id, layer->type.c_str(), layer->name.c_str());
	}
	Mat img = imread(imagename);
	if (img.empty()) {
		fprintf(stderr, "Can not load image %s\n", imagename);
		return -1;
	}
	//namedWindow("image", 0);
	//resizeWindow("image", 600, 800);
	//imshow("image", img);

	Mat blob = blobFromImage(img, 0.00392, Size(416, 416), Scalar(), true, false);
	net.setInput(blob);

	vector<Mat> outputs;
	net.forward(outputs, layer_names);
	vector<Rect> boxes;
	vector<int> classIds;
	vector<float> confidences;
	for (int i = 0; i < outputs.size(); i++)
	{
		float* data = (float*)outputs[i].data;
		for (int j = 0; j < outputs[i].rows; j++, data += outputs[i].cols) {
			Mat scores = outputs[i].row(j).colRange(5, outputs[i].cols);
			Point classIdPoint;
			double confidence;
			minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
			if (confidence > 0.5) {
				int center_x = (int)(data[0] * img.cols);
				int center_y = (int)(data[1] * img.rows);
				int width = (int)(data[2] * img.cols);
				int height = (int)(data[3] * img.rows);
				int left = center_x - width / 2;
				int top = center_y - height / 2;
				classIds.push_back(classIdPoint.x);
				confidences.push_back(confidence);
				boxes.push_back(Rect(left, top, width, height));
				//rectangle(img, Rect(left, top, width, height) , Scalar(0,0,255) , 3 , 8);
			}
		}
	}

	//namedWindow("res", 0);
	//resizeWindow("res", 600, 800);
	//imshow("res", img);

	vector<int> indexes;
	Rect Roi;
	NMSBoxes(boxes, confidences, 0.5, 0.5, indexes);
	cout << "indexes size:" << indexes.size() << endl;
	for (int i = 0; i < indexes.size(); i++)
	{
		int idx = classIds[i];
		Rect box = boxes[i];
		/*if (indexes.size() == 1) {
			box.x = abs(box.x);
			box.y = abs(box.y);
			box.width = abs(box.width);
			box.height = abs(box.height);
			Roi = box;
		}*/
		rectangle(img, box, Scalar(255, 0, 0), 3, 8);

		if (IsNeedShowScore) {
			putText(img, format("score: %.2f,%s", confidences[indexes[i]], classNames[idx].c_str()), box.tl(), FONT_HERSHEY_SIMPLEX, 4, Scalar(255, 0, 255), 3, 8);
		}
		
	}
	namedWindow("nms_res", 0);
	resizeWindow("nms_res", 600, 800);
	imshow("nms_res", img);


	waitKey(0);
	return 0;
}






Ref:
機器/深度學習: 物件偵測 Non-Maximum Suppression (NMS)
https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-non-maximum-suppression-nms-aa70c45adffa


非极大值抑制(Non-Maximum Suppression,NMS) 
https://www.cnblogs.com/makefile/p/nms.html

Advanced deep learning based object detection methods
https://www.slideshare.net/Brodmann17/advanced-deep-learning-based-object-detection-methods

留言

這個網誌中的熱門文章

何謂淨重(Net Weight)、皮重(Tare Weight)與毛重(Gross Weight)

經得起原始碼資安弱點掃描的程式設計習慣培養(五)_Missing HSTS Header

Architecture(架構) 和 Framework(框架) 有何不同?_軟體設計前的事前規劃的藍圖概念