Day1.資料探勘研究與實務_9/14_Week01上課筆記_Data Mining: Introduction

What is Data Mining?

Input Data -> Data Preprocessing -> Data mining -> Postprocessing -> Information


Data Preprocessing
Feature Selection
Normalization
Dimensionality Reduction
Data Subsetting

Postprocessing
Filtering Patterns
Visualization
Pattern Interpretation



Data Mining Tasks 
1.Clustering
Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.

2.Predictive Modeling(Classification , Regression )
Classification
Find a model  for class attribute as a function of the values of other attributes
例如:
Fraud Detection(欺詐識別) , Churn prediction for telephone customers(電話客戶流失預測)

Regression
Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.


3.Association Rules

4.Anomaly Detection







留言

這個網誌中的熱門文章

何謂淨重(Net Weight)、皮重(Tare Weight)與毛重(Gross Weight)

經得起原始碼資安弱點掃描的程式設計習慣培養(五)_Missing HSTS Header

Architecture(架構) 和 Framework(框架) 有何不同?_軟體設計前的事前規劃的藍圖概念